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Abstract

A nonlinear active cochlear model is used to simulate the steady-state frequency response and transient response to
clicks of the basilar membrane. The model includes the three-dimensional viscous fluid effects, an orthotropic cochlear
partition with dimensional and material property variation along its length, and a nonlinear active feed-forward
mechanism to represent the activity of the outer hair cells. A hybrid asymptotic and numerical method is used to
provide a fast and efficient iterative procedure for modeling and simulation of the nonlinear responses in the active
cochlea. The simulation results exhibit some of the characteristic nonlinear behavior of the basilar membrane com-
monly observed in experimental measurements, such as significant amplification and sustained “ringing” in the tran-
sient response at low stimulus level. The simple feed-forward mechanism is able to capture the properties of the
noncausal active process in the cochlea without a second filter or resonance.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Experimental measurements on frequency response of the basilar membrane (BM) in the basal turn of
the mammalian cochlea often show a sharp tuning at the characteristic frequency (CF) of that location
(Rhode, 1971; Sellick et al., 1982). Kim et al. (1980) postulated that there is a “local activity” that amplifies
the motion of the BM in this region of sharp tuning. Recently, it is believed that this activity that enhances
the cochlea’s sensitivity and frequency selectivity can be attributed to the electromotility of outer hair cells
(OHCQ) in the organ of Corti (Ashmore, 1987). It also accounts for the nonlinear behavior in the basilar
membrane responses measured in the live cochlea (Ruggero et al., 1997; Recio et al., 1998) resulting from
the saturation in the force exerted by the OHCs.
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In this paper, we incorporate this nonlinear activity of the OHCs into a three dimensional cochlear
model with two fluid scale and a flexible partition. The active OHCs are modeled with a feed-forward
mechanism (Steele et al., 1993; Geisler and Sang, 1995; Steele and Lim, 1999) that accounts for their
longitudinal tilt, so that the OHCs push on the BM slightly downstream of the sensing location of their
stereocilia. We use this model to investigate if such a simple mechanism can capture the gross characteristic
behavior in an active cochlea. The model is used to simulate the BM responses due to the tone and click
inputs of various stimulus levels at the stapes and these results are compared with experimental mea-
surements from Ruggero et al. (1997) and Recio et al. (1998).

2. Formulation

The present nonlinear model (Fig. 1) is based on a macroscopic three-dimensional model consisting of a
slender fluid chamber with rigid walls divided longitudinally by a cochlear partition that includes the
flexible BM. The viscous fluid effects and the variation of dimensions and orthotropy of the BM are in-
cluded. Prescribed displacement of the stapes sets the fluid into motion resulting in traveling waves on the
BM. Due to the variation in the BM stiffness, each location along the length vibrates with different am-
plitude for various input frequencies. At a particular location, the frequency that gives the largest amplitude
is known as the CF for that location. The vibration of the BM in the live cochlea is actually amplified by the
motility of the OHCs which exert an additional force on the BM. This activity of the OHC is modeled using
a nonlinear feed-forward mechanism as depicted in Fig. 2. The OHC senses the motion of the BM via the
force acting on the cilia Fyj;, that is transmitted by the arches of Corti. This shearing force on the cilia
triggers an electro-chemical process of ions flow, causing the OHC to push back on the BM with a force
F.1. Due to the longitudinal tilt of the OHC, this force is applied on a location downstream of the sensing
cilia location, separated by a distance 4. The detailed formulation for the model is given in Lim and Steele
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Fig. 1. Schematic drawing of the cochlear model. The side and end views are shown in A and B respectively. The top view of the
cochlear partition is shown in C. A typical basilar membrane response due to a harmonic excitation is shown.
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Fig. 2. Feed-forward mechanism of the outer hair cells. Transverse view A and the longitudinal view B are shown. Free body diagrams
in C show the balance of forces on the BM and arches.

(2002). Here, a brief outline of the formulation is presented with focus on the iterative solution used to deal
with the nonlinear activity in the model.

In the present three-dimensional model, the fluid displacement # and pressure py fields in the chamber are
represented in terms of a scalar potential ¢ and a vector quantity ¥

=Vo+V xy (1)

br = _Pfq; (2)
where p; is the density of the fluid, V is the gradient operator in space and the dot () represents the de-
rivative in time. The quantities ¢ and y are formulated in the frequency domain, assuming that a harmonic

excitation with frequency o is being applied at the stapes. They are also assumed to have the following
forms to enforce the boundary conditions of no outward fluid flow at the three rigid walls of the chamber:

d(x,y,2,1) = e PD(x ZRm cos( Lzy > cosh (B,,(x)(Ls — z)) 3)
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The coefficients ¥! and Y2 are related to the amplitude @ and R,, through no-slip boundary conditions on
the cochlear partition where the tangential displacements are zero. The coefficients R, are determined by
matching the normal displacement of the fluid with the displacement profile of the partition.

The displacement profile of the cochlear partition w is assumed to take the following form

w(x, 1, 1) = e (x) sin% (5)
where b is the width of the pectinate zone and % is the amplitude of displacement. The pectinate zone is
modeled as an orthotropic plate whose bending motion is governed by the following equation:

L0 w ) 0? 0w 02 w 6

ot (ones ) 25 (P ) + 5 (Poe ) = )

where 4 and p, are the thickness and density of the pectinate zone respectively, p, is the pressure acting on

it, and Dy, Dy, and Dy, are the bending stiffness components which take into account the fiber density and
sandwiched nature of the BM.

The active OHCs exert a force on the BM to amplify its motion. Due to the longitudinal tilt of the
OHGs, a feed-forward mechanism is used in this model. Here, the force F;. exerted by the OHC at the
location x + 4 on the BM is assumed to be proportional to the total force Fpy acting on the BM at
the location x

Fu(x + A,1) = a(x, ) Fam(x, 1) (7)
= a(x, 1) (2F; (x, 1) + Fu(x, 1)) (8)

where o(x, ¢) is the feed-forward gain. The total force acting on the BM is in turn given by the sum of forces
from the two fluid chambers F; and the OHCs. The longitudinal distance A4 between the sensing cilia lo-
cation and the supporting Dieter’s cell location of an OHC may be determined from anatomical data. It is a
critical parameter in the feed-forward mechanism as it accounts for the phase lead of the OHC force over
the fluid force acting on the same cross-section of the BM. In the region whose CF is close to the excitation
frequency, this phase difference in the OHC force results in a net input of energy over each time cycle giving
a significant amplification of the BM motion. If the longitudinal tilt of the OHC is ignored and the feed-
forward distance reduced to zero, the amplification effect of the feed-forward mechanism will diminish
because the OHC force will now act in phase with the fluid forces. In this case, the OHC force effectively
increases the fluid forces acting on the BM by a small factor of /(1 — «) (typically o < 0.5) which would
not give any large amplification.

The force from the OHC is known to saturate with the motion of the BM as shown in Fig. 3. From the
relation in Eq. (8), the gain factor « is thus given by the chord joining a point on the curve to the origin.
This gain factor remains fairly constant for small basilar membrane displacement and decreases to a small
value as the basilar membrane displacement increases due to this saturation in the outer hair cell force.

To solve for the BM response, the fluid and partition displacements are matched at their interface so that
W (x) = &(x). Next, the requirement of force balance on the partition leads to the following eiconal
equation:

Ky(n) — 2(1 n ) peahe(n) = 0 9)

einA — o
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Fig. 3. Profile of the outer hair cell force F, showing the saturation with the force acting on the basilar membrane Fgy. The feed-
forward gain factor o is given by the gradient of the chord joining a point on the graph to the origin.

where K, is the effective stiffness of the pectinate zone, 4 is the effective thickness of fluid that contributes to
the mass in the system. These quantities depend on the local wavenumber n(x) which is approximated by
n? ~ —¢ . /¢. The term o/(e"? — o) accounts for the active force from the OHCs. Finally, by imposing the
continuity condition for each cross-section of the fluid duct, we obtain the following transport equation:

d? ( W Ry sinh nLs

n
for a fluid duct with constant width and height. An equation of the similar form can also be derived for a
fluid duct with varying cross-sectional area (Lim, 2000).

To find the response of the partition due to a harmonic excitation at the stapes, we first solve for the
wavenumber n(x) using the eiconal equation (9). Subsequently, these wavenumbers are substituted into
the transport equation (10) and this differential equation is solved to obtain the response amplitude #". The
boundary conditions imposed are the displacement input at the stapes and zero pressure at the helicotrema.
The transport equation is solved using a combination of the asymptotic (WKB) method in the short wave
region (where n is large) and numerical Runge-Kutta method in the long wave region (where # is small). In
fact, these two methods complement each other very well as they provide a fast and accurate answer in the
region where the other would fail to do so.

This hybrid WKB-numeric solution provides a fast and efficient computation that is essential for the
iterative solution needed for a nonlinear problem. The nonlinearity is manifested in the dependence of the
gain factor « on the amplitude of the response #" due to the saturation of OHC force. In the solution
process, an initial guess of the feed-forward gain o(x) at each grid point is made based on the amplitude
(approximated by the WKB method) of the response at the grid point that is immediately upstream. Once
the first set of wavenumbers n(x) and BM response # (x) are determined, subsequent iterations on the
solution are obtained using either the relaxation method or secant method. The iteration process stops
when the relative error between successive values of the feed-forward gain o falls within a certain tolerance
(1% 1s used in the present case) and a converged solution for the response is obtained. This iteration process
is illustrated in Fig. 4.

Although the present formulation is based in the frequency domain where the excitation from the stapes
is harmonic, the model can be extended to provide the transient response of the BM subjected to a click
input at the stapes. This is done by first applying a Fourier transform on the stapes input to obtain its
harmonic components. Each harmonic component is then analyzed using the above formulation in the
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Fig. 4. Flowchart illustrating the iterative solution process of obtaining the wavenumber and BM response.

No

frequency domain. Finally, the synthesis of these harmonic responses using the inverse Fourier transform
gives the transient response of the BM. In the present case, each harmonic analysis is performed inde-
pendently so that the various frequency components are not coupled to each other. This is similar to the
quasilinear analysis conducted by Kanis and de Boer (1993). The validity of such an approach will need to
be verified by a model that include the cross-coupling among frequency components or a model formulated
in the time domain. Development of such a model will be pursued in the future.

3. Results

The above model is used to simulate the BM responses to tones and clicks presented at the stapes. The
input parameters to the model are based on the anatomy of the chinchilla cochlea used by Lim and Steele
(2002). The parameters that are difficult to quantify are the “knee” points in the OHC force saturation
curve in Fig. 3, and these are probably dependent on the complex micro-mechanics of the organ of Corti
and the mechanoelectrical transduction process of the OHC. However, the absolute values of these
quantities are not important for obtaining relative response of the BM to the stapes input. These points of
saturation just provide a reference for a relative measure for the level of high or low stimulus at the stapes.
For the present calculation, the set of “knee” values is calibrated against experimental measurements in the
chinchilla by Ruggero et al. (1997) so that the calculated results are in a comparable region of the stimulus
level as used in the experiments. The stapes input to the model is varied from low to high over a range
corresponding to 0-90 dB SPL in the experiments. Over this range, the OHC force crosses over the “knee”
region, from being proportional to the BM force to being saturated in value. The maximum gain factor
used here is o = 0.2.

3.1. Frequency response

The BM response when the stapes is excited at a frequency of 10 kHz at various input levels (20-80 dB
SPL) is shown in the top panel of Fig. 5. The plot gives the BM amplitude normalized by the stapes input
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Fig. 5. The top panel shows the amplitude of the steady state response of BM normalized to the stapes input when excited at 10 kHz for
various levels of stimulus input. The lower panel shows the feed-forward gain factor along the basilar membrane for various levels of
stimulus input.

against the distance along the cochlear duct measured from the stapes. For a low stimulus level (20 dB
SPL), the amplitude is maximum at a location 3 mm from the stapes. Thus, this location has a CF of
10 kHz. However, for higher stimulus level, the peak of the response is shifted basally towards the stapes.
The normalized amplitude of the BM response also decreases indicating the suppression of activity with
high stimulus level. This is evident from the lower panel of Fig. 5 which shows the feed-forward gain factor
o variation along the length of the cochlea for the various stimulus level. For high stimulus level of 80 dB
SPL, the gain factor is reduced to near zero where the peak of the response amplitude occurs. As the
stimulus level is reduced, the gain factor is progressively restored to the maximum value of 0.2.

The BM velocity at the location 3 mm from the stapes is plotted against the the input level in Fig. 6. It
shows a linear increase for low input level up to about 30 dB SPL, but turns nonlinear as the activity in the
OHC get suppressed with higher stimulus level. At high input level, the response is suppressed by about 30—
40 dB. This nonlinear suppression in response with stimulus level is also observed in experimental mea-
surements by Ruggero et al. (1997), as shown by the points in the plot.

The frequency response of the same location (3 mm from the stapes) over a range of excitation fre-
quencies is shown in Fig. 7. The stimulus level is varied from 20 to 80 dB SPL. Each curve gives the
amplitude and phase of the response on the basilar membrane normalized by the stapes input displacement.
For a low input level, a large amplification is present due to the active process in the cochlea. With in-
creasing stimulus level, the response is suppressed and the CF is shifted down to about 6 kHz. These es-
sential gross features of the response are typically observed in experimental measurements such as those of
Ruggero et al. (1997) which are given by the points in the plot. The experimental results are indifferent to
the input level up to about 7 kHz (results for 20 dB SPL plotted with dark squares overlap with the results
for 80 dB SPL plotted with open squares). This phenomenon also shows up in the simulation results up to
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Fig. 6. Nonlinear compression of the BM response at x = 3 mm with stimulus level. The BM velocity linear increase with stimulus level
is suppressed, or compressed nonlinearly, as the stimulus level increases. Experimental measurements (indicated as points in the plot)
by Ruggero et al. (1997) are included for comparison.
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Fig. 7. Frequency response of BM at x = 3 mm normalized to the stapes input for various level of stimulus input from 20 to 80 dB SPL.
The amplitude plot (top panel) is given on a log scale and the phase plot (lower panel) is given on a linear scale. The simulation results
are given by lines in the plots. Experimental measurements (indicated as points in the plots) by Ruggero et al. (1997) are included for
comparison.
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Fig. 8. Normalized profile of click input at the stapes for transient response simulation. The actual displacement input is scaled ac-
cordingly for the low and high stimulus levels.
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Fig. 9. Normalized BM response at x = 2 mm (CF =15 kHz) to click input. For low stimulus level of 20 dB SPL (lower panel), the
response shows a longer “ringing’ that for high stimulus level of 80 dB SPL (upper panel).

about 5 kHz. The response amplitude rolls off rapidly beyond 10 kHz as depicted by the simulation results,
and this is also commonly observed in experimental measurements. For the phase of the BM response
relative to the stapes motion, the simulation results show a larger accumulation in phase than the exper-
imental results. This discrepancy could probably be due to the assumption that the stapes in the model is
located at the end of the fluid duct (x = 0) whereas the actual position of the stapes in the cochlea extends
over a small portion of the basal end of the BM. There is also a possibility that the current simplistic feed-
forward mechanism has missed out on other essential mechanics or processes present in the cochlea.
Despite such differences, the phase of the responses calculated from the model behaves in a similar manner
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Fig. 10. Normalized BM response at x = 3 mm (CF = 10 kHz) to click input. For low stimulus level of 20 dB SPL (lower panel), the
response shows a longer “ringing” that for high stimulus level of 80 dB SPL (upper panel).

as the experimental results in their indifference to the stimulus level, i.e. the phases do not change much with
the stimulus level. This is also an indication of the invariance of fine time structure to stimulus intensity
(Shera, 2001).

3.2. Transient response

A series of clicks with a time profile as shown in Fig. 8 are repeatedly applied at the stapes at a time
interval of 10 ms. Figs. 9 and 10 show the transient response of the BM at points 2 and 3 mm from the
stapes respectively. These responses are again normalized by the stapes displacement which are applied in
turn at 20 and 80 dB SPL. Similar to the frequency response, the normalized BM transient responses show a
higher amplification at the low stimulus level. The nonlinear behavior of the BM is also reflected by the
differences in the shape of the transient responses. For low stimulus level, there is usually a second lobe at
the tail of the transient response after the main envelope decreases to zero. At low stimulus level, a sus-
tained “‘ringing” effect in the BM response is also obtained, i.e. the BM displacement takes a longer time to
settle back to zero. At high stimulus level, the “ringing” effect is reduced as the OHC force saturates, and
the feed-forward gain factor o decreases. This phenomenon is also observed in experiments by Recio et al.
(1998) where the BM response in the live cochlea exhibits more “ringing” when stimulated by a low
stimulus level of clicks as compared to a high stimulus level.

4. Concluding remarks

An active cochlear model has been constructed to include a nonlinear feed-forward mechanism to
represent the OHCs in the organ of Corti. This model is used to simulate the BM steady-state frequency



K-M. Lim, C.R. Steele | International Journal of Solids and Structures 40 (2003) 5097-5107 5107

response to tones and transient response to clicks presented at the stapes. The simulation results is able to
capture the gross characteristic nonlinear behavior of the BM commonly observed in experimental mea-
surements. These include significant frequency response suppression and decrease in CF with high stimulus
level, invariance of phase with stimulus level, and prolong “‘ringing” in the transient response to clicks for
low stimulus level.

However, there are some differences between the simulation results and experimental measurements.
Besides mismatch in some of the details in the responses, the large difference in the phase accumulation of
the frequency response may indicate that the current model may be too simple to capture all the right
mechanics in the cochlea. One deficiency in the present model is probably the lack of a feedback mechanism
commonly used in several other active cochlear models (Neely, 1985; Geisler, 1991). In fact, de Boer and
Nuttall (2002) pointed out that the active process in the cochlea would contain a combination of both feed-
forward and feedback based on their analysis of experimental results of the BM response. Nevertheless, the
present feed-forward mechanism addresses the findings of de Boer and Nuttall (2002) on the two basic
properties of the active process: (i) the active process is noncausal, and (ii) the active process results from
spatial interaction without any filtering or resonance. For the first property, it is noted that the feed-for-
ward mechanism actually pushes on a location on the BM before the traveling wave reaches that location.
The action applied is based on the future response of that location of the BM, and hence the mechanism is
noncausal. The present model assumes that the OHC exerts a force immediately on the BM when it senses a
shearing motion at its stereocilia. This is in agreement with the second property that no additional filtering
or resonance is involved in the active process.
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